

Reg. No	o. :	***************************************
---------	------	---

Name:

Third Semester B.Tech. Degree Examination, April 2015 (2013 Scheme) 13.306 : DIGITAL ELECTRONICS (T)

Time: 3 Hours

Max. Marks: 100

PART-A

Answer for all questions. Each question carries 2 Marks.

1. Simplify the expression,

- 2. Write the canonical POS expression for the given function, $f(x, y, z) = \pi M(0,1,5,7)$.
- 3. Define fan-out and noise margin.
- 4. Realise a clocked SR Flip Flop with logic gates.
- 5. Differentiate latch and Flip Flop.
- 6. Give any two applications of timing circuits.
- 7. Define flow table for an asynchronous sequential network.
- 8. How the state diagram helps to realize a logic circuit?
- 9. Give the basic structure of a Configurable Logic Block (CLB)?
- 10. Give the syntax for array declaration in VHDL.

(10×2=20 Marks)

PART-B

Answer any one question from each module. Each full question carries 20 Marks.

Module - I

11. a) Realise the function with the help of a multiplexer,

$$f(A,B,C,D) = \Sigma(0,1,3,4,8,9,15)$$

8

12

b) Simplify $P = \pi (0,1,2,3,8,9,11,13,15)$ using K-map and implement the circuit using logic gates.

- 12. a) Reduce $S = \sum 1,3,5,12,14 + d(2,10,15)$ using Quine McCluskey method.
 - b) What is decoder? Derive logic diagram for 4 to 10 line decoder.

6

Module - II

- 13. a) Explain:
 - i) Excitation table and
 - ii) State diagram with an example in each case.

8

b) Draw the circuit of master slave flip flop and explain its mode of operation.

12

OR

14. a) Design a synchronous counter for generating the given sequence 0,5,1,7,3, the sequence is self starting and repeating, draw the logic diagram also.

10

b) What is a shift register? How it has classified? Explain briefly.

10

Module - III

15. a) Design a sequential circuit of the following state diagram and implement with D Flip Flop.

b) Design a suitable state machine for the following conditions, that has an input 'w' and output 'z'. The machine is a sequence detector that produces z=1 when the previous two values of 'w' were 00 or 11, otherwise 'z'=0. Give state table, state diagram, state assigned table.

10

16. a) Reduce the given flow table and find a state assignment table that allows this FSM to be implemented as simple as possible, preserving the Moore model. Derive an excitation table also.

14

6

Present State	Nex	Output			
	00	01	10	11	0
А	Α	E	С	VII	1
В	Ψ.	E	Н	В	0
С	G		С	F	1
D	Α	D		В	0
E	G	E	edia.	В	0
F	QU.	D	С	F	0
G	G	Е	С	-	0
Н	Α		Н	В	1

b) Give state table reduction methods.

Module - IV

- 17. a) Discuss the input output characteristic of a TTL gate.
 - b) Write the VHDL code for a JK Flip Flop with behavioral model.

OR

- 18. a) Differentiate PAL and PLA with the help of a neat structural diagram.
 - b) Construct a combinational circuit with ROM for accepting three bit numbers and generates an output number equal to the square of the input number.
 10